Screening of CD96 and ASXL1 in 11 patients with Opitz C or Bohring-Opitz syndromes.
نویسندگان
چکیده
Opitz C trigonocephaly (or Opitz C syndrome, OTCS) and Bohring-Opitz syndrome (BOS or C-like syndrome) are two rare genetic disorders with phenotypic overlap. The genetic causes of these diseases are not understood. However, two genes have been associated with OTCS or BOS with dominantly inherited de novo mutations. Whereas CD96 has been related to OTCS (one case) and to BOS (one case), ASXL1 has been related to BOS only (several cases). In this study we analyze CD96 and ASXL1 in a group of 11 affected individuals, including 2 sibs, 10 of them were diagnosed with OTCS, and one had a BOS phenotype. Exome sequences were available on six patients with OTCS and three parent pairs. Thus, we could analyze the CD96 and ASXL1 sequences in these patients bioinformatically. Sanger sequencing of all exons of CD96 and ASXL1 was carried out in the remaining patients. Detailed scrutiny of the sequences and assessment of variants allowed us to exclude putative pathogenic and private mutations in all but one of the patients. In this patient (with BOS) we identified a de novo mutation in ASXL1 (c.2100dupT). By nature and location within the gene, this mutation resembles those previously described in other BOS patients and we conclude that it may be responsible for the condition. Our results indicate that in 10 of 11, the disease (OTCS or BOS) cannot be explained by small changes in CD96 or ASXL1. However, the cohort is too small to make generalizations about the genetic etiology of these diseases.
منابع مشابه
Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice
De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decre...
متن کاملBohring-Opitz syndrome (BOS) with a new ASXL1 pathogenic variant: Review of the most prevalent molecular and phenotypic features of the syndrome.
Bohring-Opitz syndrome (BOS) was first described by Bohring et al. [1999]. The authors reported four cases which had several features in common, including a prominent metopic suture, hypertelorism, exophthalmos, cleft lip and palate, limb anomalies, as well as difficulty feeding with severe developmental delays. In almost 50% of cases that meet the clinical criteria for BOS, de novo frameshift ...
متن کاملBohring-opitz syndrome - A case of a rare genetic disorder.
The diagnostic challenge of Bohring-Opitz Syndrome, a rare genetic disorder has haunted clinicians for ages. Our patient was born at term via caesarean-section with a birth weight of 1.95 kilograms. She had mild laryngomalacia, gastroesophageal reflux disease and seizures. Physical signs included microcephaly, hemangioma, low set ears, cleft palate, micrognatia and the typical BOS posture. Chro...
متن کاملCancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex
ASXL1 is the obligate regulatory subunit of a deubiquitinase complex whose catalytic subunit is BAP1. Heterozygous mutations of ASXL1 that result in premature truncations are frequent in myeloid leukemias and Bohring-Opitz syndrome. Here we demonstrate that ASXL1 truncations confer enhanced activity on the ASXL1-BAP1 complex. Stable expression of truncated, hyperactive ASXL1-BAP1 complexes in a...
متن کاملAn Interstitial 20q11.21 Microdeletion Causing Mild Intellectual Disability and Facial Dysmorphisms
We report a case of an interstitial chromosome 20q11.21 microdeletion in a 7-year-old male child presenting with mild intellectual disability and facial dysmorphisms. Array comparative genomic hybridization (CGH) has shown that the deletion resulted in the loss of 68 genes, among which 5 genes (COX4I2, MYLK2, ASXL1, DNMT3B, and SNTA1) are disease causing. The size of the deletion was estimated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of medical genetics. Part A
دوره 170A 1 شماره
صفحات -
تاریخ انتشار 2016